Feuille 1 Algèbre Matrices

Exercice 1.

Soit
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \mathcal{M}_{2,2}(\mathbb{R})$$

Pour tout $n \in \mathbb{Z}$, calculer A^n .

Exercice 2.

Soit
$$A = \begin{pmatrix} 5 & 4 \\ 4 & 3 \end{pmatrix} \in \mathcal{M}_{2,2}(\mathbb{R})$$
 et soit $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathcal{M}_{2,1}(\mathbb{R})$ et soit $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathcal{M}_{1,2}(\mathbb{R})$

- 1. Calculer AX, ^tXA et ^tXAX
- 2. Calculer A^{-1} , l'inverse de la matrice A.

Exercice 3.

Soit *E* l'ensemble des matrices de la forme
$$T = \begin{pmatrix} \alpha & 1 - \alpha \\ \beta & 1 - \beta \end{pmatrix} \in \mathcal{M}_{2,2}(\mathbb{R})$$
, où $\alpha \in [0,1]$ et $\beta \in [0,1]$

Autrement dit la somme des coefficients de la première ligne vaut 1 et la somme des coefficients de la seconde ligne vaut 1.

- 1. Montrer que pour tout $T \in E$ et pour tout $n \in \mathbb{N}^*$, $T^n \in E$
- 2. Soit $T = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$, montrer que $T \in E$, puis montrer, par récurrence, que pour tout $n \in \mathbb{N}$

$$T^{n} = \frac{1}{2} \begin{pmatrix} 1 + 2^{-n} & 1 - 2^{-n} \\ 1 - 2^{-n} & 1 + 2^{-n} \end{pmatrix}$$

Et vérifier que $T^n \in E$.

- 3. Les joueurs d'un club de football sont partagés en deux équipes : une équipe A de titulaires et une équipe B de remplaçants qui ont toutes les deux le même nombres de joueurs. L'entraîneur change la composition de ces équipes après chacun des matchs, suivant les performances des joueurs. Une étude statistique menée au cours des saisons précédentes permet d'estimer que :
 - Si un joueur fait partie de l'équipe A, la probabilité qu'il joue le match suivant est ¾.
 - Si un joueur fait partie de l'équipe B, la probabilité qu'il joue le match suivant est donc de $\frac{1}{4}$.
 - Enzo vient d'arriver dans le club et la probabilité a_n qu'il joue le match n et $b_n = 1 a_n$ la probabilité qu'il ne joue pas le match.
 - On suppose qu'il a une chance sur dix de jouer le premier match, donc $a_0 = 0.1$.

Montrer que $P_n = (a_n \ b_n)$ vérifie la relation de récurrence

$$\begin{cases} P_{n+1} = P_n T, & n \in \mathbb{N} \\ P_0 = \left(\frac{1}{10}, \frac{9}{10}\right) \end{cases}$$

Où
$$T = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$
.

4. Quelle est la probabilité qu'il joue le match 1, le match n?

Exercice 4.

A tout nombre réel t on associe la matrice

$$M(t) = \begin{pmatrix} \cosh(t) & \sinh(t) \\ \sinh(t) & \cosh(t) \end{pmatrix}$$

- 1. Soient t_1 et t_2 deux réels. Calculer le produit matriciel $M(t_1)M(t_2)$.
- 2. Soit t un réel. Montrer que M(t) est inversible et fournir une expression très simple de $[M(t)]^{-1}$.

Exercice 5.

Soit U_n une suite de vecteurs de $\mathcal{M}_{2,1}(\mathbb{R})$ définie par $U_{n+1}=AU_n$, où $A=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $U_0=\begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

- 1. Montrer par récurrence que $\forall n \in \mathbb{N}$ que $U_n = A^n U_0$.
- 2. Calculer U_n en fonction de n.

Exercice 6.

Soit U_n une suite de vecteurs de $\mathcal{M}_{2,1}(\mathbb{R})$ définie par $U_{n+1} = AU_n + B$, où $A = \begin{pmatrix} 1/5 & 0 \\ 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $U_0 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

- 1. Montrer qu'il existe une matrice colonne C de $\mathcal{M}_{2,1}(\mathbb{R})$ qui vérifie C = AC + B
- 2. Soit $V_n = U_n C$, montrer par récurrence que $\forall n \in \mathbb{N}$ que $V_n = A^n V_0$.
- 3. Calculer U_n en fonction de n.

Exercice 7.

- 1. Si $A \in \mathcal{M}_{2,3}(\mathbb{R})$ et $B \in \mathcal{M}_{3,6}(\mathbb{R})$, alors peut-on effectuer les opérations C = A + B, D = AB Si c'est possible quelle est la dimension de C, de D?
- 2. Pour effectuer le produit de deux matrices A et B il faut que
 - a. A et B aient le même nombre de lignes ?
 - b. A et B aient le même nombre de colonnes ?
 - c. A a autant de lignes que B de colonnes ?
 - d. A a autant de colonnes de B de lignes ?

Répondre par vrai ou faux à chaque fois.

3. Si
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 0 & -1 & 3 \\ -2 & 0 & 4 \end{pmatrix}$$
 et $B = \begin{pmatrix} 3 & 0 & 2 \\ 1 & 2 & -1 \\ 3 & 1 & 0 \end{pmatrix}$

Calculer AB et BA

4. Si
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 0 & -1 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} 3 & 0 & 2 \\ 1 & 2 & -1 \\ 3 & 1 & 0 \end{pmatrix}$

Expliquer pourquoi on peut calculer AB (et calculer cette matrice) et pourquoi on ne peut pas calculer BA.

Exercice 8.

Calculer l'inverse, si elle existe, des matrices suivantes.

$$A_1 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & 4 \\ 0 & 0 & 1 \end{pmatrix}; \ A_2 = \begin{pmatrix} 1 & 2 & -3 \\ 1 & -1 & 4 \\ -2 & -1 & -1 \end{pmatrix}$$

2

Exercice 9.

Soit
$$A = \begin{pmatrix} 13 & -8 & -12 \\ 12 & -7 & -12 \\ 6 & -4 & -5 \end{pmatrix}$$

1. Calculer A^n pour tout $n \in \mathbb{N}$.

2. Calculer A^n pour tout $n \in \mathbb{Z}$.

Exercice 10.

Soit A une matrice carrée. On suppose que A vérifie l'identité $A^3 - A^2 - I = 0$. Montrer que A est inversible et donner une formule simple pour A^{-1} .

Exercice 11.

Exercice 11.

Soit
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

- 1. Calculer A^2 et A^3 . Calculer $A^3 A^2 + A I$.
- 2. Exprimer A^{-1} en fonction de A^2 , A et I.
- 3. Exprimer A^4 en fonction de A^2 , A et I.

Exercice 12.

On dit qu'une matrice carrée M est nilpotente lorsqu'il existe un $k \ge 1$ tel que $M^k = 0$ et qu'elle est unipotente lorsqu'il existe un entier $k \ge 1$ tel que $M^k = I_n$. Soit $n \ge 1$ un entier et A et B deux matrices carrées (n, n).

- 1. Montrer que si AB est nilpotente, BA l'est aussi.
- 2. Montrer que si AB est unipotente, BA l'est aussi.

Exercice 13.

Soient A et B deux matrices dans $\mathcal{M}_n(\mathbb{K})$ satisfaisant AB = BA.

1. Montrer que pour tout $n \in \mathbb{N}$ on a :

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^{n-k} B^k = \sum_{k=0}^n \binom{n}{k} B^{n-k} A^k$$

2. Calculer A^n pour tout $n \in \mathbb{N} \setminus \{0,1,2\}$, où A est la matrice suivante :

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Exercice 14.

Soit A la matrice
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
.

Ecrire A = B + I, calculer B^n pour tout $n \in \mathbb{N}$, et en déduire A^n . Vérifier que $A^2 = 5A - 4I$. En déduire que A est inversible et calculer A^{-1} .

Exercice 15.

Soit
$$A = \begin{pmatrix} 5 & -4 \\ 4 & -3 \end{pmatrix}$$
. Calculer A^{250} . On pourra calculer pour tout $k \ge 2$, B^k où $B = A - I$

3

Exercice 16.

Soit *m* un réel non nul, on pose :

$$A = \begin{pmatrix} 0 & m & m^2 \\ \frac{1}{m} & 0 & m \\ \frac{1}{m^2} & \frac{1}{m} & 0 \end{pmatrix}$$

- 1. Calculer (A + I)(A 2I).
- 2. Soit deux matrices B et C telles que BC = O et $C \neq O$, peut-on en déduire que B = O?
- 3. Soit $B = \frac{1}{3}(A+I)$ et $C = \frac{1}{3}(A-2I)$. Calculer B^2 et C^2 . En déduire une expression simple de B^n et C^n , $n \in \mathbb{N}^*$.
- 4. En déduire que pour tout $n \ge 1$:

$$A^n = 2^n B + (-1)^{n+1} C$$

Exercice 17.

Soit $n \ge 1$, un entier, et soient A et B deux matrices carrées (n, n). On suppose que la somme de chaque ligne de A et la somme de chaque ligne de B vaut 1. Montrer qu'il en ait de même pour le produit AB.

Exercice 18.

Montrer que la matrices carrée A définie par :

$$A = \begin{pmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & 3 & 1 \\ 0 & -1 & -2 & -1 \end{pmatrix}$$

Est inversible en calculant explicitement son inverse.